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Abstract 1 

Copy number variants (CNV) are associated with phenotypic variation in several species. However, 2 

properly detecting changes in copy numbers of sequences remains a difficult problem, especially in lower 3 

quality or lower coverage next-generation sequencing data. Here, inspired by recent applications of machine 4 

learning in genomics, we describe a method to detect duplications and deletions in short-read sequencing 5 

data. In low coverage data, machine learning appears to be more powerful in the detection of CNVs than 6 

the gold-standard methods or coverage estimation alone, and of equal power in high coverage data. We also 7 

demonstrate how replicating training sets allows a more precise detection of CNVs, even identifying novel 8 

CNVs in two genomes previously surveyed thoroughly for CNVs using long read data. 9 

Available at: https://github.com/tomh1lll/dudeml 10 

Keywords: Duplication, Deletion, Machine-Learning, Next-generation sequencing, coverage 11 

Introduction 12 

Copy number variation (CNV) of DNA sequences is responsible for functional phenotypic variation in 13 

many organisms, particularly when it comes to causing or fighting diseases (STURTEVANT 1937; INOUE 14 

AND LUPSKI 2002; RASTOGI AND LIBERLES 2005; JENNIFER L. NEWMAN. 2006; REDON et al. 2006; 15 

UNCKLESS et al. 2016). Despite its importance, properly detecting copy number variants is difficult and so 16 

the extent that CNVs contribute to phenotypic variation has yet to be fully ascertained (REDON et al. 2006; 17 

CHAKRABORTY et al. 2017). This detection difficulty is due to  challenges in aligning CNVs, with similar 18 

copies being combined in both Sanger-sequencing and with mapping short-read NGS data to a reference 19 

genome lacking the duplication (REDON et al. 2006; YE et al. 2009). Several tools have been developed to 20 

detect these CNVs in next-generation sequencing (NGS) data, but for proper accuracy, they require high 21 

coverages of samples (for the detection of split-mapped reads, or better estimations of relative coverage), 22 

long-reads (able to bridge the CNVs) or computationally intensive methods (REDON et al. 2006; YE et al. 23 

2009; CHEN et al. 2016; CHAKRABORTY et al. 2017). This limits the ability to detect CNVs between 24 

samples sequenced to relatively low coverages, with short reads on lower quality genomes. 25 

The recent development of numerous machine learning techniques in several aspects of genomics 26 

suggests a role for machine learning in the detection of copy number variants (ROSENBERG et al. 2002; 27 

SHEEHAN AND SONG 2016; SCHRIDER et al. 2017; SCHRIDER AND KERN 2018). Contemporary machine 28 

learning methods are able to classify windows across the genome with surprising accuracy, even using 29 

lower quality data (KERN AND SCHRIDER 2018). Additionally, machine learning techniques are generally 30 

less computationally intensive than other modern methods such as Approximate Bayesian computation, 31 

https://github.com/tomh1lll/dudeml
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because the user providing a training set for the supervised detection of classes (BEAUMONT et al. 2002; 32 

SCHRIDER AND KERN 2018). 33 

Here we introduce a novel deep-learning-based method for detecting duplications and deletions, 34 

named ‘Duplication and Deletion Classifier using Machine Learning’ (dudeML). We outline our rationale 35 

for the statistics used to detect CNVs and the method employed, in which we calculate relative coverage 36 

changes across a genomic window (divided into sub windows) which allows for the classification of 37 

window coverages using different machine learning classifiers. Using both simulated and known copy 38 

number variants, we show how dudeML can correctly detect copy number variants and outperforms basic 39 

coverage estimates alone. 40 

Methods 41 

Machine learning method and optimization 42 

Inspired by recent progress in machine learning for population genomics (SCHRIDER AND KERN 2016; 43 

KERN AND SCHRIDER 2018; SCHRIDER AND KERN 2018), we sought to develop a method to accurately and 44 

quickly classify the presence or absence of copy number variants in genomic windows using a supervised 45 

machine learning classifier. Based on previous software and methods for copy number detection (YE et al. 46 

2009; CHEN et al. 2016), we identified a number of statistics that may help determine if a duplication or 47 

deletion is present in a particular window. We reasoned that both standardized and normalized median 48 

coverage should indicate if a window is an outlier from the coverage (Figure 1, black), and that the standard 49 

deviation increases in regions with higher coverage, decreases in regions with lower coverage but increase 50 

dramatically at CNV edges due to rapid shifts in coverage (Figure 1, grey). Another component of some 51 

CNV detection algorithms are unidirectional split mapped reads which also indicate the breakpoint of a 52 

structural variant such as a deletion or tandem duplication (expected at the red/blue borders in Figure 1) 53 

(YE et al. 2009; PALMIERI et al. 2014). 54 

In this classifier, we used these measures across a set of windows to define the copy number and 55 

CNV class of the focal window at the center (Figure 2A). Initially, we sought to identify which of the 56 

statistics (and in what windows) are most useful for determining the presence or absence of a copy number 57 

variant, relative to a reference genome. To do this, we simulated tandem duplications and deletions (100-58 

5000bp) across the Drosophila melanogaster reference chromosome 2L. We then simulated 100bp paired-59 

end reads for this chromosome using WGsim (LI 2012) and mapped these to the standard reference 2L 60 

using BWA and SAMtools (LI AND DURBIN 2009; LI et al. 2009), with repeats masked using RepeatMasker 61 

(SMIT AND HUBLEY 2015). We also simulated a second set of CNVs and related short read data as a test 62 

set. 63 
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To identify candidate CNVs, we calculated the statistics derived above in windows between 10bp 64 

and 1000bp (sliding the same distance). We reformatted the data to vectors including the statistics for a 65 

focal sub window and 10 sub windows upstream and downstream, creating a set of statistics describing the 66 

20 sub windows around a focal sub window, for every window set on the chromosome. We then assigned 67 

each window a class, based on the known copy number and known class (deletion, duplication or normal) 68 

for the focal sub window. We trained a random forest classifier with 100 estimators (PEDREGOSA et al. 69 

2011) to extract what features are necessary to classify the central sub window as containing a CNV or not. 70 

We examined the contribution of statistics to classifying focal sub-windows and qualitatively removed 71 

those unimportant to the classifier e.g. statistics which appeared to not contribute to classification in any 72 

degree in any sub windows were removed upon visual inspection. This scripts and tutorial for this process 73 

are available at https://github.com/tomh1lll/dudeml, including the tool for detecting CNVs. 74 

To further hone the method we determined how window size (10 - 1000bp), number of windows 75 

(1 - 41), coverage of data (0.2 - 40) the frequency of CNV in a pool (0.05 - 1), and how the machine learning 76 

model affects the ability to correctly classify a CNV in simulated data (Random Forest 100 estimators and 77 

500 estimators, Extra Trees 100 and 500 estimators, Decision Tree, and Convolutional Neural Network 78 

classifiers) (PEDREGOSA et al. 2011). In each case we changed only one variable, otherwise coverage was 79 

set at 20-fold, window-size was set at 50bp, the number of sub windows each side was set to 5 and the 80 

model was set as Random Forest (100 estimators). For all comparisons (coverages, window sizes, number 81 

of windows or model comparisons) we counted the number of True and False positive CNVs and estimated 82 

a receiver operating characteristic curve (BROWN AND DAVIS 2006). 83 

We used bedtools (QUINLAN AND HALL 2010) and RepeatMasker (SMIT AND HUBLEY 2015) to 84 

identify regions on chromosome 2L without high levels of repetitive content. Following this, we simulated 85 

2000 duplications and 2000 deletions across these regions, varying in size between 100bp and 5000bp. To 86 

assess a machine learning classifiers ability to detect CNVs across pooled data, for three replicates, we 87 

created a further subset of CNVs present at different frequencies in pools of chromosomes, for pools of 2 88 

(the equivalent of sequencing an outbred diploid individual), 5, 10 and 20 chromosomes, allowing the CNV 89 

to vary in frequency between 5% and 100% across samples, based on the number of chromosomes 90 

simulated (e.g. a 50% minimum in a pool of 2 chromosomes, equivalent to a heterozygous CNV, and a 5% 91 

minimum in a pool of 20, equivalent to a singleton CNV in a pool of 10 diploid individuals). This process 92 

was repeated twice to create independent test and training sets, both with known CNVs. 93 

We generated chromosomes containing simulated CNVs and simulated reads for these 94 

chromosomes using WGsim (LI 2012). We simulated reads to multiple median depths of coverage per base, 95 

https://github.com/tomh1lll/dudeml
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between 0.2 to 20. We then combined all reads for each pool set and mapped these reads to the D. 96 

melanogaster iso-1 reference 2L using BWA and SAMtools (LI AND DURBIN 2009; LI et al. 2009). 97 

For each data set, of varying window sizes, coverages and pool sizes, we then reformatted each 98 

window as described above to give the statistics for the focal window and 5 windows up and downstream, 99 

unless otherwise stated. For each training set, we defined each vector by their presence in a duplication, 100 

deletion or neither. For each window we also assigned the number of copies found of that window per 101 

chromosome, e.g. 0 for a fixed deletion, 0.5 for a deletion found in 50% of chromosomes, 1.75 for a 102 

duplication found in 75% chromosomes etc. We then used SKlearn to train a classifier based on the vectors 103 

assigned to each class (PEDREGOSA et al. 2011). The classifiers were then used to assign classes to windows 104 

in the test sets, which were then compared to their known designations to identify the true positive detection 105 

rate of each set. 106 

Testing the classifier on real data with known CNVs 107 

To test the classifier in known copy number variants, we downloaded the D. melanogaster iso-1 and A4 108 

reference genomes (DOS SANTOS et al. 2015; CHAKRABORTY et al. 2017). Then, based on (CHAKRABORTY 109 

et al. 2017), we extracted windows with known duplications and deletions relative to each other, for 110 

example a tandem duplication present in one genome but not the other would appear as a deletion. We 111 

downloaded short reads for each D. melanogaster genome (iso-1: SRA ERR701706-11, A4: 112 

http://wfitch.bio.uci.edu/~dspr/Data/index.html) and mapped them to both genomes separately using BWA 113 

and SAMtools (LI AND DURBIN 2009; LI et al. 2009). Using the previously described methods, we 114 

calculated the coverage statistics for each window of each genome using bedtools and custom python 115 

scripts. Using the training set described previously, we then classified each window of the iso-1 and A4 116 

strains mapped to both their own genome and the alternative reference and compared to the previously 117 

detected CNVs, this allowed us to find potential false-positives that may be due to reference genome issues.  118 

For each dataset, we also simulated 100 independent training sets, which we used to test the 119 

effectiveness of bootstrapping the random forest classifier. Each window was reclassified for each bootstrap 120 

training set, which are then used to calculate the consensus state for each window and the proportion of 121 

boostrap replicates supporting that states. 122 

Finally, to validate any apparent ‘False-Positive’ CNVs identified with our machine learning 123 

classifier, we downloaded Pacific Bioscience long read data for both Iso-1 and A4 (A4 PacBio SRA: 124 

SRR7874295 - SRR7874304, Iso-1 PacBio SRA: SRR1204085 - SRR1204696), and mapped this data to 125 

the opposite reference genome. For each high confidence (greater than 95% of bootstraps) ‘False-Positive’ 126 

CNV, we manually visualized the PacBio data in the integrative genomics viewer (ROBINSON et al. 2011), 127 
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looking for changes in coverage and split-mapped reads. For a randomly chosen group of these CNVs, we 128 

designed primers and confirmed CNVs using PCR (Supplementary Data 1 & 2). We designed primer pairs 129 

around each CNV to assess product size differences between strains, as well as inside the CNV for strain 130 

specific amplification for deletions or laddering in the case of duplications. PCR products from primer sets 131 

in both Iso-1 and A4 were then run on a 2% gel using gel electrophoresis (Supplementary Figure 5). 132 

Results and Discussion 133 

A machine learning classifier can detect CNVs with high accuracy 134 

We sought to develop a quick, simple and accurate classifier of copy number variants in next generation 135 

sequencing data (PEDREGOSA et al. 2011; SCHRIDER AND KERN 2016; SCHRIDER et al. 2017). First, we 136 

assessed how useful multiple statistics are in the detection of non-reference duplications and deletions in 137 

short-read next-generation sequencing data (Figure 1). We simulated short read data for a chromosome 138 

containing multiple insertions and deletions relative to a reference genome and mapped these reads to the 139 

original reference chromosome. For windows across the chromosome we then calculated several statistics 140 

thought to be helpful for detecting copy number variants (CNVs) including standardized and normalized 141 

median coverage, the standard deviation of the standardized or normalized coverage within each window, 142 

and the number of split mapped reads across the window. We reasoned that each of these statistics can 143 

signal the increase or decrease of copy number of a sequence relative to a reference genome (Figure 1, see 144 

Materials and Methods). For each focal window we also included these statistics for neighboring windows. 145 

These vectors of statistics for windows with known CNVs are then fed into a machine learning classifier, 146 

which identifies the values most important to the correct classification of copy number. For simplicity we 147 

will refer to this classifier as the Duplication and Deletion Classifier using Machine Learning (dudeML) 148 

moving forward. The tool developed as a wrapper for the pipeline, instructions for installation, specifics of 149 

the pipeline for detecting copy number variants, and the location of test data used in this manuscript are 150 

available at https://github.com/tomh1lll/dudeml.  151 

152 

https://github.com/tomh1lll/dudeml
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Figure 1. Schematic demonstrating the rationale behind each statistic used to initially determine the 153 

presence/absence of each copy number variant. We expect the Standardized median coverage (black line) 154 

to increase in duplications (red) and decrease in deletions (blue). We expect the standard deviation of the 155 

standardized coverage to greatly increase at the edges of CNVs (grey line). At the borders of CNVs we also 156 

expect an increase in split mapped reads, specifically across the edges of deletions (dark blue) or within a 157 

tandemly duplicated region (dark red). 158 

 159 

 160 

Using dudeML on high coverage (>20-fold), simulated copy number variants, we find that both 161 

standardized and normalized median coverage and standard deviation are important for classifying a 162 

window. However, because normalized coverage relies on knowing the coverage distribution of a sample, 163 

we chose to remove this statistic from further analysis. Surprisingly, the number of split reads (reads where 164 

two ends map to different regions of the genome) is relatively unimportant for finding CNVs (Figure 2A). 165 

Though the breadth of a distribution will vary depending on the window-size and mean size of the CNV, 166 

the most important windows for classifying a CNV appear to be the focal window and up to 5 windows up 167 

and downstream of the focal window (Figure 2B). On a related note, increasing the number of windows 168 

surrounding the focal window decreases the true-positive rate due to a repeat content interfering with the 169 

classifier (Supplementary Figures 1 & 2, true-positive rate ~ window number, GLM t-value = -12.056, p-170 

value = 2.478e-33). We also find different statistics have different contributions across different window 171 

sizes, for example, larger windows are more likely to include the edges of the CNV so standard deviation 172 
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is more important for CNV classification in larger windows (Figure 2A). However, larger windows appear 173 

to have lower true-positive rates, again due to the increased chance of overlapping with repeat content 174 

(Supplementary Figures 1 & 2, true-positive rate ~ window size: GLM t-value = -2.968, p-value = 0.00303). 175 

We also compared different supervisor machine learning classifiers and found little qualitative 176 

difference between them, though the most successful classifier on simulated data was a Random Forest 177 

Classifier (Supplementary Figure 1 & 2, true-positive rate ~ classifier GLM t-value = 5.758, p-value = 178 

8.65e-09), with no significant difference between 100 and 500 estimators (GLM t-value = -0.133, p-value 179 

= 0.246) (PEDREGOSA et al. 2011). 180 

For this high coverage simulated data (20-fold coverage), containing known CNVs, we compared 181 

dudeML to the prediction of a CNV based on copy number alone (rounding the coverage to the nearest 182 

whole value), or Pindel (YE et al. 2009), a frequently used method for deletion and duplication prediction. 183 

dudeML has a higher rate of success predicting the presence of a CNV and the windows in which the CNV 184 

starts/ends (Figure 2B, including false-positives and negatives in all cases). However, the success of a 185 

window-based approach decreases as windows increase in size, for both the machine learning classifier and 186 

coverage alone, with Pindel having a higher success rate for CNVs compared to dudeML using sub-187 

windows greater than ~250bp (Figure 2B). As dudeML is not optimized to function in regions with 188 

repetitive content, it also lacks the ability to detect CNVs in repetitive regions, unlike Pindel (YE et al. 189 

2009). Overall, dudeML has higher success at fine window sizes or in lower coverage data (Figure 2) while 190 

for very high coverage data for large CNVs, Pindel appears to be superior (Figure 2). 191 

  192 
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Figure 2. A. Relative contribution of each statistic to the classification of copy number variants, across 193 

windows in increasing distance from the focal window (dashed lined), separated by window size. B. The 194 

true positive rate of identification of simulated CNVs based on either, median coverage of the window, 195 

dudeML and Pindel. For Pindel, the overlap of called and true CNVs, rounded to the nearest window size, 196 

was used. C. Comparison of detection of copy number variants between Pindel, pure coverage estimations 197 

and using dudeML for varying parameters. Detection rate decreases across all methods with decreasing 198 

coverage and with increasing pool sizes. dudeML loses the ability to detect smaller CNVs with increasing 199 

window size (only shown for dudeML). Note that in B and C, for all comparisons, windows which cannot 200 

be examined in all cases (including repetitive regions) have been removed. 201 

 202 

CNV machine learning classifiers are relatively agnostic to coverage and can detect CNVs in pooled 203 

data with relatively high accuracy 204 

We next tested the extent that changing different parameters affected dudeML’s ability to correctly 205 

detect CNVs, compared to pure copy number estimates (rounding the coverage to the nearest whole value), 206 

or Pindel (YE et al. 2009). We examined the effects of decreasing coverage, increasing window size and 207 

increasing the number of sub windows on correctly classifying CNVs with dudeML, in comparison to 208 

Pindel and coverage estimates for decreasing coverage. As expected, all three methods (dudeML using 209 
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eleven 50bp windows, Pindel and pure coverage) have a decreasing true-positive rate with decreasing 210 

mapped coverage (Supplementary Figures 1 & 2, true-positive rate ~ coverage GLM t-value = 209.4 p-211 

value < 2e-16). However, the correct detection of variants and their copy number is above 95% for 212 

euchromatic regions with dudeML until coverage is below 2-fold (Figure 2C, 99.8% above 10-fold, 48% 213 

at 0.5-fold). This can also be seen in the ROC curves for duplications and deletions at different sample 214 

coverages (Supplementary Figure 1) and in the proportion of true-positives found (Supplementary Figure 215 

2). Note that the ROC curves include all windows across the genome (including windows with no CNVs), 216 

potentially inflating the true-positive rate (Supplementary Figure 1), while the second instance, CNVs in 217 

regions of the genome not analyzed are also included, inflating the false-negative rate (Supplementary 218 

Figure 2). 219 

Compared to dudeML, Pindel and pure coverage estimation decreases in effectiveness faster than 220 

linearly (Figure 2C, >77% above 10-fold coverage, <3.5% at 0.5-fold coverage). As Pindel relies on split-221 

mapped reads of certain mapping orientations to detect copy number variants, low coverage data likely 222 

lacks an abundance of these reads for the correct detection of CNVs (YE et al. 2009). Similarly, the spurious 223 

nature of data at low coverages prevents pure relative coverage comparisons from being useful. With 224 

machine learning however, the classifier relies on thousands of similar examples in each state to more 225 

reliably predict the presence or absence of a CNV, if the training data is similar to the sampled data. In fact, 226 

correctly predicting a CNV in data of decreasing coverage with a poorly optimized training set has a similar 227 

success rate as pure-coverage alone (Supplementary Figure 3), highlighting the importance of a training set 228 

as like the true data as possible. 229 

Often, populations are sequenced as pools of individuals instead of individually prepared samples, 230 

due to its reducing the cost of an experiment while still providing relatively high power for population 231 

genetic inference (SCHLÖTTERER et al. 2014). We simulated CNVs at varying frequencies throughout pools 232 

of chromosomes (poolseq) to assess dudeML’s ability to detect the correct number of copies of a gene in a 233 

population. We generated simulated pools as both test data and training sets of 1 (haploid or inbred), 2 234 

(diploid, 50% coverage), 5, 10, 20 and 40 chromosomes (pools at 1-fold coverage for each chromosome), 235 

again, we compared this to Pindel’s ability to detect the CNV and relative coverage estimates. In all three 236 

cases, as the pool size increases, the ability to detect the correct number of copies of a window (or to detect 237 

copy number variants at all in Pindel) decreases (Figure 2). However, for copy number variants above ~20% 238 

frequency, dudeML is able to correctly predict their presence an average of 87% of the time, suggesting 239 

that for poolseq, dudeML has high confidence in calling CNVs compared to pure coverage of Pindel, but 240 

low confidence in accurate frequency prediction (< 21% success rate in both methods). This is likely as the 241 

changes in relative coverage and proportion of split reads becomes so slight that the proper detection is not 242 
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feasible. For example, finding a fixed duplication in a single chromosome sample requires detecting a 2-243 

fold change in coverage, while a duplication in one chromosome in a pool of 20 requires detecting a 1.05-244 

fold change in coverage. With variance in coverage existing in even inbred samples, this makes proper 245 

CNV detection at high resolution in pools unfeasible. As before, a machine learning classifier has relatively 246 

higher success (Figure 2C), though still low, ranging from 47-94% proper detection. If the goal is, however, 247 

to detect changes in copy number variants between two samples (either over time or between two 248 

geographically distinct samples), dudeML should be enough to detect changes at around a ~20% resolution 249 

with relatively high confidence (Figure 2C), such that it may not be possible to get accurate frequency 250 

estimates in the pool, but should be able to infer the presence of duplications/deletions with at least 20% 251 

frequency, or distinguish between CNVs present at 20% frequency and 40% frequency. 252 

 253 

Resampling increases CNV machine learning classifier accuracy 254 

To further tune the accuracy of our classifier, we tested its effectiveness on the detection of copy number 255 

variants in real data, as opposed to simulated copy number variants in simulated reads (though with a 256 

classifier still using simulated CNVs and simulated data for training). We therefore downloaded two 257 

Drosophila melanogaster reference genomes – both assembled with long-read data – with identified 258 

duplications and deletions relative to each other (A4 and Iso-1) (CHAKRABORTY et al. 2017). When data 259 

from one reference is mapped to the other, regions with copy number variants show signatures of changes 260 

in standardized coverage and standard deviation as seen in simulated data (Figure 1, Supplementary Data 261 

1). 262 

As before we trained the classifier based on median coverage and standard deviation of simulated 263 

CNVs and standard regions, then predicted windows with duplications or deletions using a random forest 264 

approach (PEDREGOSA et al. 2011). Strangely, and unseen in simulated examples, the proportion of false-265 

positives was extremely high, with over ten times the number of false-positives compared to true-positives 266 

(Table 1). We suspected that artefacts and false CNVs were caused by real structural variants that went 267 

undetected in the original training set and areas with inconsistent mapping rates, so we attempted to control 268 

for this by resampling across multiple training sets with independently generated CNVs. We generated 100 269 

independent training sets across both the Iso-1 and A4 reference genomes to create 100 independent 270 

classifiers. Following this we performed a bootstrapping-like approach, predicting the copy number of each 271 

window based on each of the 100 classifiers and taking the consensus of these calls. As the number of 272 

replicates increased, the false-positive rate dropped dramatically with little effect on the true-positive rate 273 

(Table 1, Figure 3B). In fact, taking CNVs found in at least 98% of the bootstraps removed all but 17 false-274 
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positives. This did however remove some low confidence but real duplications, and therefore provides a 275 

conservative set of CNVs (Figure 3A) (CHAKRABORTY et al. 2017). This suggests that multiple independent 276 

training sets can remove any artefacts found in a single training set which may lead to false calls (Table 1, 277 

Figure 3A). 278 

As so many false-positives are found with high confidence across both samples, we next visually 279 

inspected the regions of the genome called as False-Positive CNVs in at least 95 of 100 bootstraps 280 

(Supplementary Figure 4, 106 duplications and 64 deletions across both strains). We extracted long reads 281 

(> 250bp) from PacBio data for both strains and mapped these to the opposite strains genome, which we 282 

then visualized in the integrative genomics viewer (Robinson et al. 2011). All False-positive CNVs 283 

examined show similar signatures to true-positive copy numbers (e.g. split-mapped reads across regions of 284 

0 coverage for deletions, and supplementary alignments of reads in regions of high coverage for 285 

duplications), suggesting that they may be real CNVs and not false-positives (or at least have similar 286 

signatures to real CNVs, 18 examples given in Supplementary Data 1). We further PCR validated 12 of 287 

these CNVs, chosen at random (Supplementary Figure 5, Supplementary Data 2). While we could validate 288 

all deletions, we found no length variation in PCR product for putative duplications for primers designed 289 

outside the duplication, which suggests that if these duplications exist, they may not be tandem duplications 290 

(which would produce a longer or laddered PCR product) and instead are trans duplications or are 291 

segregating within the originally sequenced line. Logically this would fit with the absence of these CNVs 292 

in the previous survey which searched for tandem duplications specifically (CHAKRABORTY et al. 2017), 293 

while dudeML identifies duplications primarily based on coverage and so is agnostic to cis or trans 294 

duplications. 295 

 296 

Table 1: The number of predicted copy number variants in each strain (relative to the alternate strain), 297 

compared to previously identified copy-number variants (Chakraborty et al. 2017) , across differing 298 

numbers of bootstraps and cutoffs, including the false-positive rate (FPR) for each category. Note that 299 

previously called CNVs not examined here (as they are in regions of the genome not analyzed) are included 300 

as False-Negatives in brackets for transparency. 301 

   Iso-1  A4 

Number of classifiers 

(% bootstrap cutoff) 
Predictions  Duplication Deletion  Duplication Deletion 

1 (0) True-positive  150 172  161 134 

1 (0) False-Positive  1615 3822  8505 1949 
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1 (0) False-Negative  0 0  0 0 

 FPR  0.89922049 0.94487  0.976016 0.91459 

10 (0) True-positive  150 172  161 134 

10 (0) False-Positive  398 314  566 280 

10 (0) False-Negative  0 0  0 0 

 FPR  0.68739206 0.58473  0.730323 0.6060 

100 (0) True-positive  150 172  161 133 

100 (0) False-Positive 135 82  178 82 

100 (0) False-Negative  0 0  0 1 

 FPR  0.4272 0. 26885  0. 45994 0. 3742 

100 (98) True-positive  145 172  153 133 

100 (98) False-Positive  3 4  4 6 

100 (98) False-Negative  5 0  8 1 

 FPR  0.01630435 0.017621  0.018779 0.03191 

 total  153 176  165 140 

 302 

Figure 3: A. Number of CNVs detected in Drosophila melanogaster strains with known CNVs relative to 303 

each other after 100 bootstraps. CNVs are labelled by their previously known detection in these strains 304 

(‘True-Positive’), their lack of knowledge in these strains (‘False-Positive’) and if known CNVs were 305 

missed (‘False-Negative’). CNVs are also labelled based on the proportion of bootstraps confirming them. 306 

B. The proportion of bootstraps for each detected CNV in A, separated by if they are a false-positive, true-307 

positive, duplication or deletion and by each strain. 308 
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 309 

Based on these results, bootstrapping appears to average over random effects of simulated training 310 

sets to remove a majority of false-positive CNVs called, allowing a more conservative assessment of the 311 

copy number variants found throughout an assessed strain. A majority of high confidence false-positives 312 

also appear to be actual CNVs, suggesting that dudeML can detect CNVs other tools miss – even using 313 

long read data. 314 

Conclusion 315 

In summary, we have shown that machine learning classifiers, even simple classifiers such as dudeML, 316 

perform quite well at detecting copy number variants in comparison to other methods, particularly in 317 

samples with reduced coverage or in pools, using just statistics derived from the coverage of a sample. 318 

These tools are not computationally intensive and can be used across a large number of datasets to detect 319 

duplications and deletions for numerous purposes. We expect machine learning to provide powerful tools 320 

for bioinformatic use in the future. 321 
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Supplementary Figure 1: Receiver operating characteristic (ROC) curves for correctly detecting 405 

duplications and deletions across different classifiers, sample coverages, sub-window numbers and 406 

window-sizes (denoted by line color). Classifiers used as follows: convolutional neural network (CNN), 407 

decision tree classifier (DTC), extra trees classifier with 100 estimators (ETC100), extra trees classifier 408 

with 500 estimators (ETC500), random forest classifier with 100 estimators (RFC100), random forest 409 

classifier with 500 estimators (RFC500). 410 

 411 
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Supplementary Figure 2: Proportion of CNVs detected or missed given changing parameters, including 412 

different numbers of sub windows analyzed, the size of sub windows, the fold coverage of sample data 413 

analyzed and different machine learning classifiers used, including convolutional neural network (CNN), 414 

decision tree classifier (DTC), extra trees classifier with 100 estimators (ETC100), extra trees classifier 415 

with 500 estimators (ETC500), random forest classifier with 100 estimators (RFC100), random forest 416 

classifier with 500 estimators (RFC500). If parameter is not variable, it is set as follows: 20-fold coverage, 417 

11 windows, 50bp windows, random forest classifier (100 estimators). 418 

 419 
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Supplementary Figure 3: True-Positive rates (TPR) of mis-specified training sets across different fold-420 

coverage samples and classifiers, and different window sizes in samples and classifiers. 421 

 422 
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Supplementary Figure 4: The proportion of bootstraps for each detected CNV in Figure 2, separated by 423 

if they are a false-positive, true-positive, duplication or deletion. 424 

 425 

Supplementary Figure 5: Gel electrophoresis image of PCR products from primers designed around 426 

putative CNVs missed in the previous survey, numbered as Supplementary Data 2. Deletions are shown 427 

as products shorter than expected, while duplications should be longer or show laddering. Products are 428 

ordered showing A4 (A) as the left of the pair, while Iso-1 (I) is on the right. 429 

 430 

 431 
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Supplementary Data 1: Screenshots of the integrated genomics viewer for a subset of called duplications 432 

and deletions in A4 data mapped to Iso-1 reference genome and vice versa (compared to the data mapped 433 

to its own reference). These CNVs were called as false-positives due to their absence in the previous 434 

survey. Coverage and reads with supplementary alignments support their existence. 435 

Supplementary Data 2: Primer Sequences of a subset of putative duplications and deletions described in 436 

Supplementary Figure 5 and Supplementary Data 1. 437 
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